Sorry, I don't understand your search. ×
Back to Search Start Over

Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation.

Authors :
Frederik Noll
Jonas Behnke
Silke Leiting
Kerstin Troidl
Gustavo Teixeira Alves
Holger Müller-Redetzky
Klaus T Preissner
Silvia Fischer
Source :
PLoS ONE, Vol 12, Iss 12, p e0190002 (2017)
Publication Year :
2017
Publisher :
Public Library of Science (PLoS), 2017.

Abstract

Self-extracellular RNA (eRNA), released from stressed or injured cells upon various pathological situations such as ischemia-reperfusion-injury, has been shown to act as an alarmin by inducing procoagulatory and proinflammatory responses. In particular, M1-polarization of macrophages by eRNA resulted in the expression and release of a variety of cytokines, including tumor necrosis factor (TNF)-α or interleukin-6 (IL-6). The present study now investigates in which way self-eRNA may influence the response of macrophages towards various Toll-like receptor (TLR)-agonists. Isolated agonists of TLR2 (Pam2CSK4), TLR3 (PolyIC), TLR4 (LPS), or TLR7 (R848) induced the release of TNF-α in a concentration-dependent manner in murine macrophages, differentiated from bone marrow-derived stem cells by mouse colony stimulating factor. Here, the presence of eRNA shifted the dose-response curve for Pam2CSK4 (Pam) considerably to the left, indicating that eRNA synergistically enhanced the cytokine liberation from macrophages even at very low Pam-levels. The synergistic activation of TLR2 by eRNA/Pam was duplicated by other TLR2-agonists such as FSL-1 or Pam3CSK4. In contrast, for TLR4-agonists such as LPS a synergistic effect of eRNA was much weaker, and was not existent for TLR3-, or TLR7-agonists. The synergistic eRNA/Pam action was dependent on the NFκB-signaling pathway as well as on p38MAP- and MEK1/ERK-kinases and was prevented by predigestion of eRNA with RNase1 or by antibodies against TLR2. Thus, the presence of self-eRNA as alarming molecule sensitizes innate immune responses towards pathogen-associated molecular patterns (PAMPs) in a synergistic way and may thereby contribute to the differentiated outcome of inflammatory responses.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.1ff4ae6d2e9440eb9de04889d86b1275
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0190002