Back to Search Start Over

Integrating SAR, Optical, and Machine Learning for Enhanced Coastal Mangrove Monitoring in Guyana

Authors :
Kim Chan-Bagot
Kelsey E. Herndon
Andréa Puzzi Nicolau
Vanesa Martín-Arias
Christine Evans
Helen Parache
Kene Mosely
Zola Narine
Brian Zutta
Source :
Remote Sensing, Vol 16, Iss 3, p 542 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Mangrove forests are a biodiverse ecosystem known for a wide variety of crucial ecological services, including carbon sequestration, coastal erosion control, and prevention of saltwater intrusion. Given the ecological importance of mangrove forests, a comprehensive and up-to-date mangrove extent mapping at broad geographic scales is needed to define mangrove forest changes, assess their implications, and support restoration activities and decision making. The main objective of this study is to evaluate mangrove classifications derived from a combination of Landsat-8 OLI, Sentinel-2, and Sentinel-1 observations using a random forest (RF) machine learning (ML) algorithm to identify the best approach for monitoring Guyana’s mangrove forests on an annual basis. Algorithm accuracy was tested using high-resolution planet imagery in Collect Earth Online. Results varied widely across the different combinations of input data (overall accuracy, 88–95%; producer’s accuracy for mangroves, 50–87%; user’s accuracy for mangroves, 13–69%). The combined optical–radar classification demonstrated the best performance with an overall accuracy of 95%. Area estimates of mangrove extent ranged from 908.4 to 3645.0 hectares. A ground-based validation exercise confirmed the extent of several large, previously undocumented areas of mangrove forest loss. The results establish that a data fusion approach combining optical and radar data performs marginally better than optical-only approaches to mangrove classification. This ML approach, which leverages free and open data and a cloud-based analytics platform, can be applied to mapping other areas of mangrove forests in Guyana. This approach can also support the operational monitoring of mangrove restoration areas managed by Guyana’s National Agricultural and Research Extension Institute (NAREI).

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.207cd117438b4b70834585f412504b23
Document Type :
article
Full Text :
https://doi.org/10.3390/rs16030542