Back to Search Start Over

Development of novel-nanobody-based lateral-flow immunochromatographic strip test for rapid detection of recombinant human interferon α2b

Authors :
Xi Qin
Maoqin Duan
Dening Pei
Jian Lin
Lan Wang
Peng Zhou
Wenrong Yao
Ying Guo
Xiang Li
Lei Tao
Youxue Ding
Lan Liu
Yong Zhou
Chuncui Jia
Chunming Rao
Junzhi Wang
Source :
Journal of Pharmaceutical Analysis, Vol 12, Iss 2, Pp 308-316 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

Recombinant human interferon α2b (rhIFNα2b) is widely used as an antiviral therapy agent for the treatment of hepatitis B and hepatitis C. The current identification test for rhIFNα2b is complex. In this study, an anti-rhIFNα2b nanobody was discovered and used for the development of a rapid lateral flow strip for the identification of rhIFNα2b. RhIFNα2b was used to immunize an alpaca, which established a phage nanobody library. After five steps of enrichment, the nanobody I22, which specifically bound rhIFNα2b, was isolated and inserted into the prokaryotic expression vector pET28a. After subsequent purification, the physicochemical properties of the nanobody were determined. A semiquantitative detection and rapid identification assay of rhIFNα2b was developed using this novel nanobody. To develop a rapid test, the nanobody I22 was coupled with a colloidal gold to produce lateral-flow test strips. The developed rhIFNα2b detection assay had a limit of detection of 1 μg/mL. The isolation of I22 and successful construction of a lateral-flow immunochromatographic test strip demonstrated the feasibility of performing ligand-binding assays on a lateral-flow test strip using recombinant protein products. The principle of this novel assay is generally applicable for the rapid testing of other commercial products, with a great potential for routine use in detecting counterfeit recombinant protein products.

Details

Language :
English
ISSN :
20951779
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Journal of Pharmaceutical Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.20a1c56ecc4f4d52a4c921558c992c94
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jpha.2021.07.003