Back to Search Start Over

Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency

Authors :
Yongxing Cui
Junxi Hu
Shushi Peng
Manuel Delgado‐Baquerizo
Daryl L. Moorhead
Robert L. Sinsabaugh
Xiaofeng Xu
Kevin M. Geyer
Linchuan Fang
Pete Smith
Josep Peñuelas
Yakov Kuzyakov
Ji Chen
Source :
Advanced Science, Vol 11, Iss 35, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
35
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.20c248c1619145c686b4cd182122405d
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202308176