Back to Search
Start Over
Joint superpixel and Transformer for high resolution remote sensing image classification
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Deep neural networks combined with superpixel segmentation have proven to be superior to high-resolution remote sensing image (HRI) classification. Currently, most HRI classification methods that combine deep learning and superpixel segmentation use stacking on multiple scales to extract contextual information from segmented objects. However, this approach does not take into account the contextual dependencies between each segmented object. To solve this problem, a joint superpixel and Transformer (JST) framework is proposed for HRI classification. In JST, HRI is first segmented into superpixel objects as input, and Transformer is used to model the long-range dependencies. The contextual relationship between each input superpixel object is obtained and the class of analyzed objects is output by designing an encoding and decoding Transformer. Additionally, we explore the effect of semantic range on classification accuracy. JST is also tested by using two HRI datasets with overall classification accuracy, average accuracy and Kappa coefficients of 0.79, 0.70, 0.78 and 0.91, 0.85, 0.89, respectively. The effectiveness of the proposed method is compared qualitatively and quantitatively, and the results achieve competitive and consistently better than the benchmark comparison method.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.20c77aaa61c84c9aba668cbf0526f4f7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-55482-y