Back to Search
Start Over
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
- Source :
- Demonstratio Mathematica, Vol 54, Iss 1, Pp 311-317 (2021)
- Publication Year :
- 2021
- Publisher :
- De Gruyter, 2021.
-
Abstract
- A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.
Details
- Language :
- English
- ISSN :
- 23914661
- Volume :
- 54
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Demonstratio Mathematica
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.20f9be0886aa4fbcbf6da4add912de44
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/dema-2021-0032