Back to Search Start Over

The Use of the XGBoost and Kriging Methods in the Prediction of the Microstructure of CGI Cast Iron

Authors :
Łukasz Sztangret
Izabela Olejarczyk-Wożeńska
Krzysztof Regulski
Grzegorz Gumienny
Barbara Mrzygłód
Source :
Archives of Foundry Engineering, Vol vol. 23, Iss No 4, Pp 22-33 (2023)
Publication Year :
2023
Publisher :
Polish Academy of Sciences, 2023.

Abstract

Compacted Graphite Iron (CGI), is a unique casting material characterized by its graphite form and extensive matrix contact surface. This type of cast iron has a tendency towards direct ferritization and possesses a complex set of intriguing properties. The use of data mining methods in modern foundry material development facilitates the achievement of improved product quality parameters. When designing a new product, it is always necessary to have a comprehensive understanding of the influence of alloying elements on the microstructure and consequently on the properties of the analyzed material. Empirical studies allow for a qualitative assessment of the above-mentioned relationships, but it is the use of intelligent computational techniques that allows for the construction of an approximate model of the microstructure and, consequently, precise predictions. The formulated prognostic model supports technological decisions during the casting design phase and is considered as the first step in the selection of the appropriate material type.

Details

Language :
English
ISSN :
22992944
Volume :
. 23
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Archives of Foundry Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.2106970af0024f98af9bd400c5ef0520
Document Type :
article
Full Text :
https://doi.org/10.24425/afe.2023.146671