Back to Search Start Over

Pontryagin Neural Networks for the Class of Optimal Control Problems With Integral Quadratic Cost

Authors :
Enrico Schiassi
Francesco CalabrĂ²
Davide Elia De Falco
Source :
Aerospace Research Communications, Vol 2 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

This work introduces Pontryagin Neural Networks (PoNNs), a specialised subset of Physics-Informed Neural Networks (PINNs) that aim to learn optimal control actions for optimal control problems (OCPs) characterised by integral quadratic cost functions. PoNNs employ the Pontryagin Minimum Principle (PMP) to establish necessary conditions for optimality, resulting in a two-point boundary value problem (TPBVP) that involves both state and costate variables within a system of ordinary differential equations (ODEs). By modelling the unknown solutions of the TPBVP with neural networks, PoNNs effectively learn the optimal control strategies. We also derive upper bounds on the generalisation error of PoNNs in solving these OCPs, taking into account the selection and quantity of training points along with the training error. To validate our theoretical analysis, we perform numerical experiments on benchmark linear and nonlinear OCPs. The results indicate that PoNNs can successfully learn open-loop control actions for the considered class of OCPs, outperforming the commercial software GPOPS-II in terms of both accuracy and computational efficiency. The reduced computational time suggests that PoNNs hold promise for real-time applications.

Details

Language :
English
ISSN :
28136209
Volume :
2
Database :
Directory of Open Access Journals
Journal :
Aerospace Research Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.21353faef194760a8ada96a43d89b43
Document Type :
article
Full Text :
https://doi.org/10.3389/arc.2024.13151