Back to Search Start Over

Characterization of Glossy Spike Mutants and Identification of Candidate Genes Regulating Cuticular Wax Synthesis in Barley (Hordeum vulgare L.)

Authors :
Xiuxiu Bian
Lirong Yao
Erjing Si
Yaxiong Meng
Baochun Li
Xiaole Ma
Ke Yang
Yong Lai
Xunwu Shang
Chengdao Li
Juncheng Wang
Huajun Wang
Source :
International Journal of Molecular Sciences, Vol 23, Iss 21, p 13025 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Cuticular waxes comprise the hydrophobic layer that protects crops against nonstomatal water loss and biotic and abiotic stresses. Expanding on our current knowledge of the genes that are involved in cuticular wax biosynthesis and regulation plays an important role in dissecting the processes of cuticular wax metabolism. In this study, we identified the Cer-GN1 barley (Hordeum vulgare L.) mutant that is generated by ethyl methanesulfonate mutagenesis with a glossy spike phenotype that is controlled by a single recessive nuclear gene. A physiological analysis showed that the total cuticular wax loads of Cer-GN1 were one-third that of the progenitor wild-type (WT), and its water loss rate was significantly accelerated (p < 0.05). In addition, Cer-GN1 was defective in the glume’s cuticle according to the toluidine blue dye test, and it was deficient in the tubule-shaped crystals which were observed on the glume surfaces by scanning electron microscopy. Using metabolomics and transcriptomics, we investigated the impacts of cuticular wax composition and waxy regulatory genes on the loss of the glaucous wax in the spikes of Cer-GN1. Among the differential metabolites, we found that 16-hydroxyhexadecanoic acid, which is one of the predominant C16 and C18 fatty acid-derived cutin monomers, was significantly downregulated in Cer-GN1 when it was compared to that of WT. We identified two novel genes that are located on chromosome 4H and are downregulated in Cer-GN1 (HvMSTRG.29184 and HvMSTRG.29185) that encode long-chain fatty acid omega-monooxygenase CYP704B1, which regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid. A quantitative real-time PCR revealed that the expression levels of HvMSTRG.29184 and HvMSTRG.29185 were downregulated at 1, 4, 8, 12, and 16 days after the heading stage in Cer-GN1 when it was compared to those of WT. These results suggested that HvMSTRG.29184 and HvMSTRG.29185 have CYP704B1 activity, which could regulate the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley. Their downregulation in Cer-GN1 reduced the synthesis of the cuticular wax components and ultimately caused the loss of the glaucous wax in the spikes. It is necessary to verify whether HvMSTRG.29184 and HvMSTRG.29185 truly encode a CYP704B1 that regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
23
Issue :
21
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.21357989e4a1474ba25c145cab765de6
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms232113025