Back to Search Start Over

Analysis of a simulated microarray dataset: Comparison of methods for data normalisation and detection of differential expression (Open Access publication)

Authors :
Mouzaki Daphné
Marot Guillemette
Lê Cao Kim-Anh
Lavrič Miha
Jiménez-Marín Ángeles
Jaffrézic Florence
Hulsegge Ina
Garrido-Pavón Juan
Foulley Jean-Louis
Duval Mylène
Dovč Peter
Delmas Céline
Baron Michael
Pérez-Alegre Mónica
Watson Michael
Pool Marco H
Robert-Granié Christèle
San Cristobal Magali
Tosser-Klopp Gwenola
Waddington David
de Koning Dirk-Jan
Source :
Genetics Selection Evolution, Vol 39, Iss 6, Pp 669-683 (2007)
Publication Year :
2007
Publisher :
BMC, 2007.

Abstract

Abstract Microarrays allow researchers to measure the expression of thousands of genes in a single experiment. Before statistical comparisons can be made, the data must be assessed for quality and normalisation procedures must be applied, of which many have been proposed. Methods of comparing the normalised data are also abundant, and no clear consensus has yet been reached. The purpose of this paper was to compare those methods used by the EADGENE network on a very noisy simulated data set. With the a priori knowledge of which genes are differentially expressed, it is possible to compare the success of each approach quantitatively. Use of an intensity-dependent normalisation procedure was common, as was correction for multiple testing. Most variety in performance resulted from differing approaches to data quality and the use of different statistical tests. Very few of the methods used any kind of background correction. A number of approaches achieved a success rate of 95% or above, with relatively small numbers of false positives and negatives. Applying stringent spot selection criteria and elimination of data did not improve the false positive rate and greatly increased the false negative rate. However, most approaches performed well, and it is encouraging that widely available techniques can achieve such good results on a very noisy data set.

Details

Language :
German, English, French
ISSN :
12979686 and 0999193X
Volume :
39
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Genetics Selection Evolution
Publication Type :
Academic Journal
Accession number :
edsdoj.21769f3ba6174534837cf6b09b6c255e
Document Type :
article
Full Text :
https://doi.org/10.1186/1297-9686-39-6-669