Back to Search Start Over

Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients

Authors :
Rudolf A. Werner
Takahiro Higuchi
Naoko Nose
Fujio Toriumi
Yohji Matsusaka
Ichiei Kuji
Koshino Kazuhiro
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (123I-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset ‘A’; including CER, BG, and COR), while for dataset ‘B’, only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, ‘B’ was significantly different for normal and bilateral defect patterns (P

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.2176e9748ae3470fa27440af20635fb1
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-23325-3