Back to Search Start Over

Modulation Signal Recognition Based on Information Entropy and Ensemble Learning

Authors :
Zhen Zhang
Yibing Li
Shanshan Jin
Zhaoyue Zhang
Hui Wang
Lin Qi
Ruolin Zhou
Source :
Entropy, Vol 20, Iss 3, p 198 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

In this paper, information entropy and ensemble learning based signal recognition theory and algorithms have been proposed. We have extracted 16 kinds of entropy features out of 9 types of modulated signals. The types of information entropy used are numerous, including Rényi entropy and energy entropy based on S Transform and Generalized S Transform. We have used three feature selection algorithms, including sequence forward selection (SFS), sequence forward floating selection (SFFS) and RELIEF-F to select the optimal feature subset from 16 entropy features. We use five classifiers, including k-nearest neighbor (KNN), support vector machine (SVM), Adaboost, Gradient Boosting Decision Tree (GBDT) and eXtreme Gradient Boosting (XGBoost) to classify the original feature set and the feature subsets selected by different feature selection algorithms. The simulation results show that the feature subsets selected by SFS and SFFS algorithms are the best, with a 48% increase in recognition rate over the original feature set when using KNN classifier and a 34% increase when using SVM classifier. For the other three classifiers, the original feature set can achieve the best recognition performance. The XGBoost classifier has the best recognition performance, the overall recognition rate is 97.74% and the recognition rate can reach 82% when the signal to noise ratio (SNR) is −10 dB.

Details

Language :
English
ISSN :
10994300
Volume :
20
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
edsdoj.218d053be3c43b7928ec5907f608439
Document Type :
article
Full Text :
https://doi.org/10.3390/e20030198