Back to Search Start Over

Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds

Authors :
Aliya Naaz Siddiqui
Meraj Ali Khan
Amira Ishan
Source :
AIMS Mathematics, Vol 9, Iss 10, Pp 29220-29234 (2024)
Publication Year :
2024
Publisher :
AIMS Press, 2024.

Abstract

Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.

Details

Language :
English
ISSN :
24736988
Volume :
9
Issue :
10
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.21fdcae728704416bdc239330221f9fc
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20241416?viewType=HTML