Back to Search
Start Over
Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds
- Source :
- AIMS Mathematics, Vol 9, Iss 10, Pp 29220-29234 (2024)
- Publication Year :
- 2024
- Publisher :
- AIMS Press, 2024.
-
Abstract
- Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.21fdcae728704416bdc239330221f9fc
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.20241416?viewType=HTML