Back to Search Start Over

Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy.

Authors :
Rita Mendes de Almeida
Joana Tavares
Sandra Martins
Teresa Carvalho
Francisco J Enguita
Dulce Brito
Maria Carmo-Fonseca
Luís Rocha Lopes
Source :
PLoS ONE, Vol 12, Iss 8, p e0182946 (2017)
Publication Year :
2017
Publisher :
Public Library of Science (PLoS), 2017.

Abstract

BackgroundHigh throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may be due to the presence of pathogenic mutations located deep within the introns, which are not detected by conventional sequencing analysis restricted to exons and exon-intron boundaries.ObjectiveThe aim of this study was to develop a whole-gene sequencing strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis.Methods and resultsThe full genomic DNA sequence of 26 genes previously associated with HCM was analysed in 16 unrelated patients. We identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which are predicted to act through disruption of either splicing or transcription factor binding sites, are 3-fold more frequent in our cohort of probands than in normal European populations. Moreover, we found a patient that is compound heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, while family members that are compound heterozygous are clinically affected.ConclusionThis study provides a framework for scrutinizing variation along the complete intronic sequence of HCM-associated genes and prioritizing candidates for mechanistic and functional analysis. Our data suggest that deep intronic variation contributes to HCM phenotype.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.225e88ba06cb4f42b36837b4f3c41994
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0182946&type=printable