Back to Search Start Over

Fast Coherent Video Style Transfer via Flow Errors Reduction

Authors :
Li Wang
Xiaosong Yang
Jianjun Zhang
Source :
Applied Sciences, Vol 14, Iss 6, p 2630 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

For video style transfer, naively applying still image techniques to process a video frame-by-frame independently often causes flickering artefacts. Some works adopt optical flow into the design of temporal constraint loss to secure temporal consistency. However, these works still suffer from incoherence (including ghosting artefacts) where large motions or occlusions occur, as optical flow fails to detect the boundaries of objects accurately. To address this problem, we propose a novel framework which consists of the following two stages: (1) creating new initialization images from proposed mask techniques, which are able to significantly reduce the flow errors; (2) process these initialized images iteratively with proposed losses to obtain stylized videos which are free of artefacts, which also increases the speed from over 3 min per frame to less than 2 s per frame for the gradient-based optimization methods. To be specific, we propose a multi-scale mask fusion scheme to reduce untraceable flow errors, and obtain an incremental mask to reduce ghosting artefacts. In addition, a multi-frame mask fusion scheme is designed to reduce traceable flow errors. In our proposed losses, the Sharpness Losses are used to deal with the potential image blurriness artefacts over long-range frames, and the Coherent Losses are performed to restrict the temporal consistency at both the multi-frame RGB level and Feature level. Overall, our approach produces stable video stylization outputs even in large motion or occlusion scenarios. The experiments demonstrate that the proposed method outperforms the state-of-the-art video style transfer methods qualitatively and quantitatively on the MPI Sintel dataset.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.228463e9a9234d30b0ac71ed18a28421
Document Type :
article
Full Text :
https://doi.org/10.3390/app14062630