Back to Search Start Over

Radiation dosimetry of the α4β2 nicotinic receptor ligand (+)-[18F]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results

Authors :
Mathias Kranz
Bernhard Sattler
Solveig Tiepolt
Stephan Wilke
Winnie Deuther-Conrad
Cornelius K. Donat
Steffen Fischer
Marianne Patt
Andreas Schildan
Jörg Patt
René Smits
Alexander Hoepping
Jörg Steinbach
Osama Sabri
Peter Brust
Source :
EJNMMI Physics, Vol 3, Iss 1, Pp 1-17 (2016)
Publication Year :
2016
Publisher :
SpringerOpen, 2016.

Abstract

Abstract Background Both enantiomers of [18F]flubatine are new radioligands for neuroimaging of α4β2 nicotinic acetylcholine receptors with positron emission tomography (PET) exhibiting promising pharmacokinetics which makes them attractive for different clinical questions. In a previous preclinical study, the main advantage of (+)-[18F]flubatine compared to (−)-[18F]flubatine was its higher binding affinity suggesting that (+)-[18F]flubatine might be able to detect also slight reductions of α4β2 nAChRs and could be more sensitive than (−)-[18F]flubatine in early stages of Alzheimer’s disease. To support the clinical translation, we investigated a fully image-based internal dosimetry approach for (+)-[18F]flubatine, comparing mouse data collected on a preclinical PET/MRI system to piglet and first-in-human data acquired on a clinical PET/CT system. Time-activity curves (TACs) were obtained from the three species, the animal data extrapolated to human scale, exponentially fitted and the organ doses (OD), and effective dose (ED) calculated with OLINDA. Results The excreting organs (urinary bladder, kidneys, and liver) receive the highest organ doses in all species. Hence, a renal/hepatobiliary excretion pathway can be assumed. In addition, the ED conversion factors of 12.1 μSv/MBq (mice), 14.3 μSv/MBq (piglets), and 23.0 μSv/MBq (humans) were calculated which are well within the order of magnitude as known from other 18F-labeled radiotracers. Conclusions Although both enantiomers of [18F]flubatine exhibit different binding kinetics in the brain due to the respective affinities, the effective dose revealed no enantiomer-specific differences among the investigated species. The preclinical dosimetry and biodistribution of (+)-[18F]flubatine was shown and the feasibility of a dose assessment based on image data acquired on a small animal PET/MR and a clinical PET/CT was demonstrated. Additionally, the first-in-human study confirmed the tolerability of the radiation risk of (+)-[18F]flubatine imaging which is well within the range as caused by other 18F-labeled tracers. However, as shown in previous studies, the ED in humans is underestimated by up to 50 % using preclinical imaging for internal dosimetry. This fact needs to be considered when applying for first-in-human studies based on preclinical biokinetic data scaled to human anatomy.

Details

Language :
English
ISSN :
21977364
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
EJNMMI Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.22d1a721c89541809a7b0a213fbb9da3
Document Type :
article
Full Text :
https://doi.org/10.1186/s40658-016-0160-5