Back to Search Start Over

LX-BBSCA: Laplacian biogeography-based sine cosine algorithm for structural engineering design optimization

Authors :
Vanita Garg
Kusum Deep
Khalid Abdulaziz Alnowibet
Ali Wagdy Mohamed
Mohammad Shokouhifar
Frank Werner
Source :
AIMS Mathematics, Vol 8, Iss 12, Pp 30610-30638 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

In this paper, an ensemble metaheuristic algorithm (denoted as LX-BBSCA) is introduced. It combines the strengths of Laplacian biogeography-based optimization (LX-BBO) and the sine cosine algorithm (SCA) to address structural engineering design optimization problems. Our primary objective is to mitigate the risk of getting stuck in local minima and accelerate the algorithm's convergence rate. We evaluate the proposed LX-BBSCA algorithm on a set of 23 benchmark functions, including both unimodal and multimodal problems of varying complexity and dimensions. Additionally, we apply LX-BBSCA to tackle five real-world structural engineering design problems, comparing the results with those obtained using other metaheuristics in terms of objective function values and convergence behavior. To ensure the statistical validity of our findings, we employ rigorous tests such as the t-test and the Wilcoxon rank test. The experimental outcomes consistently demonstrate that the ensemble LX-BBSCA algorithm outperforms not only the basic versions of BBO, SCA and LX-BBO but also other state-of-the-art metaheuristic algorithms.

Details

Language :
English
ISSN :
24736988
Volume :
8
Issue :
12
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.23bd96593bd94677a24fa9f1c78f50fa
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20231565?viewType=HTML