Back to Search Start Over

Innovation in Hyperinsulinemia Diagnostics with ANN-L(atin square) Models

Authors :
Nevena Rankovic
Dragica Rankovic
Igor Lukic
Source :
Diagnostics, Vol 13, Iss 4, p 798 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Hyperinsulinemia is a condition characterized by excessively high levels of insulin in the bloodstream. It can exist for many years without any symptomatology. The research presented in this paper was conducted from 2019 to 2022 in cooperation with a health center in Serbia as a large cross-sectional observational study of adolescents of both genders using datasets collected from the field. Previously used analytical approaches of integrated and relevant clinical, hematological, biochemical, and other variables could not identify potential risk factors for developing hyperinsulinemia. This paper aims to present several different models using machine learning (ML) algorithms such as naive Bayes, decision tree, and random forest and compare them with a new methodology constructed based on artificial neural networks using Taguchi’s orthogonal vector plans (ANN-L), a special extraction of Latin squares. Furthermore, the experimental part of this study showed that ANN-L models achieved an accuracy of 99.5% with less than seven iterations performed. Furthermore, the study provides valuable insights into the share of each risk factor contributing to the occurrence of hyperinsulinemia in adolescents, which is crucial for more precise and straightforward medical diagnoses. Preventing the risk of hyperinsulinemia in this age group is crucial for the well-being of the adolescents and society as a whole.

Details

Language :
English
ISSN :
20754418
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.23c690f201d74c8dadfadc4b0f1f7457
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics13040798