Back to Search Start Over

Vector Decomposition Based Time-Delay Neural Network Behavioral Model for Digital Predistortion of RF Power Amplifiers

Authors :
Yikang Zhang
Yue Li
Falin Liu
Anding Zhu
Source :
IEEE Access, Vol 7, Pp 91559-91568 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

This paper presents two novel neural network models for radio-frequency (RF) power amplifiers (PAs): vector decomposed time-delay neural network (VDTDNN) model and augmented vector decomposed time-delay neural network (AVDTDNN) model. In contrast to conventional neural network-based models, VDTDNN and AVDTDNN comply with the physical characteristics of RF PAs by employing carefully designed network structures. In particular, the nonlinear operations are conducted only on the magnitude of the input signals, while the phase information is recovered with the linear weighting. Linear terms with shortcut connection, as well as high-order terms, can be used to further boost the modeling performance. The complexity analysis shows that the proposed models have significantly lower complexity than the existing neural network models. A wideband GaN RF PA excited by the 40- and 60-MHz OFDM signals were employed to evaluate the performance. The extensive experimental results reveal that the proposed VDTDNN and AVDTDNN models can achieve better linearization performance with lower computational complexity compared with the existing neural network-based models.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.23cefece877f4f62ab11a278a61c9f78
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2019.2927875