Back to Search Start Over

Small tympanic membrane perforations in the inferior quadrants do not impact the manubrium vibration in guinea pigs.

Authors :
Xiuling Zhang
Yanhong Dai
Shuyi Zhang
Wandong She
Xiaoping Du
Xiuji Shui
Source :
PLoS ONE, Vol 7, Iss 1, p e28961 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

BACKGROUND: It has been believed that location of the perforation has a significant impact on hearing loss. However, recent studies have demonstrated that the perforation sites had no impact on hearing loss. We measured the velocity and pattern of the manubrium vibration in guinea pigs with intact and perforated eardrum using a laser Doppler vibrometer in order to determine the effects of different location perforations on the middle ear transfer functions. METHODS: Two bullas from 2 guinea pigs were used to determine stability of the umbo velocities, and 12 bullas from six guinea pigs to determine the effects of different location perforations on sound transmission. The manubrium velocity was measured at three points on the manubrium in the frequencies of 0.5-8 kHz before and after a perforation was made. The sites of perforations were in anterior-inferior (AI) quadrants of left ears and posterior-inferior (PI) quadrants of right ears. RESULTS: The manubrium vibration velocity losses were noticed in the perforated ears only below 1.5 kHz. The maximum velocity loss was about 7 dB at 500 Hz with the PI perforation. No significant difference in the velocity loss was found between AI and PI perforations. The average ratio of short process velocity to the umbo velocity was approximately 0.5 at all frequencies. No significant differences were found before and after perforation at all frequencies (p>0.05) except 7 kHz (p = 0.004) for both AI and PI perforations. CONCLUSIONS: The manubrium vibration velocity losses from eardrum perforation were frequency-dependent and the largest losses occur at low frequencies. Manubrium velocity losses caused by small acute inferior perforations in guinea pigs have no significant impact on middle ear sound transmission at any frequency tested. The manubrium vibration axis may be perpendicular to the manubrium below 8 kHz in guinea pigs.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.23cf7b3cfcd455a9f9411ebd771dfe8
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0028961