Back to Search Start Over

Pearl shape classification using deep convolutional neural networks from Tahitian pearl rotation in Pinctada margaritifera

Authors :
Paul-Emmanuel Edeline
Mickaël Leclercq
Jérémy Le Luyer
Sébastien Chabrier
Arnaud Droit
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Tahitian pearls, artificially cultivated from the black-lipped pearl oyster Pinctada margaritifera, are renowned for their unique color and large size, making the pearl industry vital for the French Polynesian economy. Understanding the mechanisms of pearl formation is essential for enabling quality and sustainable production. In this paper, we explore the process of pearl formation by studying pearl rotation. Here we show, using a deep convolutional neural network, a direct link between the rotation of the pearl during its formation in the oyster and its final shape. We propose a new method for non-invasive pearl monitoring and a model for predicting the final shape of the pearl from rotation data with 81.9% accuracy. These novel resources provide a fresh perspective to study and enhance our comprehension of the overall mechanism of pearl formation, with potential long-term applications for improving pearl production and quality control in the industry.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.24204bfa0b744dc9b13fb8abcbaf4f4
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-40325-z