Back to Search Start Over

Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS

Authors :
Xiaohan Xu
Jianan Wu
Zhitao Dai
Rui Hu
Yaoqin Xie
Luhua Wang
Source :
Frontiers in Oncology, Vol 12 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

The application of metal nanoparticles (MNPs) as sensitization materials is a common strategy that is used to study dose enhancement in radiotherapy. Recent in vitro tests have revealed that magnetic gold nanoparticles (NPs) can be used in cancer therapy under a magnetic field to enhance the synergistic efficiency in radiotherapy and photothermal therapy. However, magnetic gold NPs have rarely been studied as sensitization materials. In this study, we obtained further results of the sensitization properties of the magnetic gold NPs (Fe3O4@AuNPs) with or without magnetic field using the TOPAS-nBio Monte Carlo (MC) toolkit. We analyzed the properties of Fe3O4@AuNP in a single NP model and in a cell model under monoenergetic photons and brachytherapy, and we investigated whether the magnetic field contributes to the physical sensitization process. Our results revealed that the dose enhancement factor (DEF) of Fe3O4@AuNPs was lower than that of gold nanoparticles (AuNPs) in a single NP and in a cell irradiated by monoenergetic photons. But it’s worth mentioning that under a magnetic field, the DEF of targeted Fe3O4@AuNPs in a cell model with a clinical brachytherapy source was 22.17% (cytoplasm) and 6.89% (nucleus) higher than those of AuNPs (50 mg/mL). The Fe3O4@AuNPs were proved as an effective sensitization materials when combined with the magnetic field in MC simulation for the first time, which contributes to the research on in vitro tests on radiosensitization as well as clinical research in future.

Details

Language :
English
ISSN :
2234943X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.243d5338b41b4f4cb62da449654cebc9
Document Type :
article
Full Text :
https://doi.org/10.3389/fonc.2022.992358