Back to Search Start Over

Mesoporous Silica-Layered Gold Nanorod Core@Silver Shell Nanostructures for Intracellular SERS Imaging and Phototherapy

Authors :
Sun-Hwa Seo
Ara Joe
Hyo-Won Han
Panchanathan Manivasagan
Eue-Soon Jang
Source :
Pharmaceutics, Vol 16, Iss 1, p 137 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized GNR@Ag@mSiO2-MB nanostructures possessed a uniform core–shell structure, strong near-infrared (NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intracellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to 2-MB nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm−1, corresponding to the δ(C–N–C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for SERS imaging and synergistic anticancer phototherapy in the future.

Details

Language :
English
ISSN :
19994923
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
edsdoj.24b4d59e416145eabdb1dbc2c3155efd
Document Type :
article
Full Text :
https://doi.org/10.3390/pharmaceutics16010137