Back to Search Start Over

High Voltage Electrical Discharges as an Alternative Extraction Process of Phenolic and Volatile Compounds from Wild Thyme (Thymus serpyllum L.): In Silico and Experimental Approaches for Solubility Assessment

Authors :
Marinela Nutrizio
Gianpiero Pataro
Daniele Carullo
Serena Carpentieri
Luisa Mazza
Giovanna Ferrari
Farid Chemat
Mara Banović
Anet Režek Jambrak
Source :
Molecules, Vol 25, Iss 18, p 4131 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The objective of this study was to evaluate the potential of green solvents for extractions of bioactive compounds (BACs) and essential oils from wild thyme (Thymus serpyllum L.) using theoretical and experimental procedures. Theoretical prediction was assessed by Hansen solubility parameters (HSPs) and conductor-like screening model for realistic solvents (COSMO-RS), to predict the most suitable solvents for extraction of BACs. An experimental procedure was performed by nonthermal technology high voltage electrical discharge (HVED) and it was compared with modified conventional extraction (CE). Obtained extracts were analyzed for chemical and physical changes during the treatment. Theoretical results for solution of BACs in ethanol and water, as green solvents, were confirmed by experimental results, while more accurate data was given by COSMO-RS assessment than HSPs. Results confirmed high potential of HVED for extraction of BACs and volatile compounds from wild thyme, in average, 2.03 times higher yield of extraction in terms of total phenolic content was found compared to CE. The main phenolic compound found in wild thyme extracts was rosmarinic acid, while the predominant volatile compound was carvacrol. Obtained extracts are considered safe and high-quality source reach in BACs that could be further used in functional food production.

Details

Language :
English
ISSN :
14203049
Volume :
25
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.24ea2f251dd24787aeba5183fe0a1d24
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules25184131