Back to Search Start Over

Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity

Authors :
Dina Saeed Ghataty
Reham Ibrahim Amer
Reham Wasfi
Rehab Nabil Shamma
Source :
Drug Delivery, Vol 29, Iss 1, Pp 3168-3185 (2022)
Publication Year :
2022
Publisher :
Taylor & Francis Group, 2022.

Abstract

Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.

Details

Language :
English
ISSN :
10717544 and 15210464
Volume :
29
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Drug Delivery
Publication Type :
Academic Journal
Accession number :
edsdoj.24efa9c4672844bd8311dc11e43e2060
Document Type :
article
Full Text :
https://doi.org/10.1080/10717544.2022.2127974