Back to Search Start Over

Long-Term Bed Rest Delays the Circadian Phase of Core Body Temperature

Authors :
Stefan Mendt
Katharina Brauns
Anika Friedl-Werner
Daniel L. Belavy
Mathias Steinach
Thomas Schlabs
Andreas Werner
Hanns-Christian Gunga
Alexander C. Stahn
Source :
Frontiers in Physiology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Spaceflight can be associated with sleep loss and circadian misalignment as a result of non-24 h light-dark cycles, operational shifts in work/rest cycles, high workload under pressure, and psychological factors. Head-down tilt bed rest (HDBR) is an established model to mimic some of the physiological and psychological adaptions observed in spaceflight. Data on the effects of HDBR on circadian rhythms are scarce. To address this gap, we analyzed the change in the circadian rhythm of core body temperature (CBT) in two 60-day HDBR studies sponsored by the European Space Agency [n = 13 men, age: 31.1 ± 8.2 years (M ± SD)]. CBT was recorded for 36 h using a non-invasive and validated dual-sensor heatflux technology during the 3rd and the 8th week of HDBR. Bed rest induced a significant phase delay from the 3rd to the 8th week of HDBR (16.23 vs. 16.68 h, p = 0.005, g = 0.85) irrespective of the study site (p = 0.416, g = −0.46), corresponding to an average phase delay of about 0.9 min per day of HDBR. In conclusion, long-term bed rest weakens the entrainment of the circadian system to the 24-h day. We attribute this effect to the immobilization and reduced physical activity levels associated with HDBR. Given the critical role of diurnal rhythms for various physiological functions and behavior, our findings highlight the importance of monitoring circadian rhythms in circumstances in which gravity or physical activity levels are altered.

Details

Language :
English
ISSN :
1664042X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.259b2443b3664e2185a1caa76353d8aa
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2021.658707