Back to Search Start Over

A powered simple walking model explains the decline in propulsive force and hip flexion torque compensation in human gait

Authors :
Hajime Ohtsu
Kazunori Hase
Kouta Sakoda
Shinya Aoi
Shunsuke Kita
Shinya Ogaya
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Excessive hip flexion torque to prioritize leg swings in the elderly is likely to be a factor that reduces their propulsive force and gait stability, but the mechanism is not clear. To understand the mechanism, we investigated how propulsive force, hip flexion torque, and margin of stability (MoS) change when only the hip spring stiffness is increased without changing the walking speed in the simple walking model, and verified whether the relationship holds in human walking. The results showed that at walking speeds between 0.50 and 1.75 m/s, increasing hip spring stiffness increased hip flexion torque and decreased the propulsive force and MoS in both the model and human walking. Furthermore, it was found that the increase in hip flexion torque was explained by the increase in spring stiffness, and the decreases in the propulsive force and MoS were explained by the increase in step frequency associated with the increase in spring stiffness. Therefore, the increase in hip flexion torque likely decreased the propulsive force and MoS, and this mechanism was explained by the intervening hip spring stiffness. Our findings may help in the control design of walking assistance devices, and in improving our understanding of elderly walking strategies.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.25eb6313712f48879938345d843ee022
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-41706-0