Back to Search Start Over

Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel

Authors :
Yanrong Ma
Fenglin Ran
Mingyan Xin
Xueyan Gou
Xinyi Wang
Xinan Wu
Source :
Journal of Pharmaceutical Analysis, Vol 13, Iss 10, Pp 1205-1220 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Renal tubular secretion mediated by organic anion transporters (OATs) and the multidrug resistance-associated protein 4 (MRP4) is an important means of drug and toxin excretion. Unfortunately, there are no biomarkers to evaluate their function. The aim of this study was to identify and characterize an endogenous biomarker of the renal tubular OATs-MRP4 channel. Twenty-six uremic toxins were selected as candidate compounds, of which kynurenic acid was identified as a potential biomarker by assessing the protein-binding ratio and the uptake in OAT1-, OAT3-, and MRP4-overexpressing cell lines. OAT1/3 and MRP4 mediated the transcellular vectorial transport of kynurenic acid in vitro. Serum kynurenic acid concentration was dramatically increased in rats treated with a rat OAT1/3 (rOAT1/3) inhibitor and in rOAT1/3 double knockout (rOAT1/3−/−) rats, and the renal concentrations were markedly elevated by the rat MRP4 (rMRP4) inhibitor. Kynurenic acid was not filtered at the glomerulus (99% of albumin binding), and was specifically secreted in renal tubules through the OAT1/3-MRP4 channel with an appropriate affinity (Km) (496.7 μM and 382.2 μM for OAT1 and OAT3, respectively) and renal clearance half-life (t1/2) in vivo (3.7 ± 0.7 h). There is a strong correlation in area under the plasma drug concentration-time curve (AUC0–t) between cefmetazole and kynurenic acid, but not with creatinine, after inhibition of rOATs. In addition, the phase of increased kynurenic acid level is earlier than that of creatinine in acute kidney injury process. These results suggest that albumin-bound kynurenic acid is an appropriate endogenous biomarker for adjusting the dosage of drugs secreted by this channel or predicting kidney injury.

Details

Language :
English
ISSN :
20951779
Volume :
13
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Journal of Pharmaceutical Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.260f32fd6174c2f94f1fe08f2b91894
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jpha.2023.05.007