Back to Search Start Over

Machine Learning for Short-Term Load Forecasting in Smart Grids

Authors :
Bibi Ibrahim
Luis Rabelo
Edgar Gutierrez-Franco
Nicolas Clavijo-Buritica
Source :
Energies, Vol 15, Iss 21, p 8079 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

A smart grid is the future vision of power systems that will be enabled by artificial intelligence (AI), big data, and the Internet of things (IoT), where digitalization is at the core of the energy sector transformation. However, smart grids require that energy managers become more concerned about the reliability and security of power systems. Therefore, energy planners use various methods and technologies to support the sustainable expansion of power systems, such as electricity demand forecasting models, stochastic optimization, robust optimization, and simulation. Electricity forecasting plays a vital role in supporting the reliable transitioning of power systems. This paper deals with short-term load forecasting (STLF), which has become an active area of research over the last few years, with a handful of studies. STLF deals with predicting demand one hour to 24 h in advance. We extensively experimented with several methodologies from machine learning and a complex case study in Panama. Deep learning is a more advanced learning paradigm in the machine learning field that continues to have significant breakthroughs in domain areas such as electricity forecasting, object detection, speech recognition, etc. We identified that the main predictors of electricity demand in the short term: the previous week’s load, the previous day’s load, and temperature. We found that the deep learning regression model achieved the best performance, which yielded an R squared (R2) of 0.93 and a mean absolute percentage error (MAPE) of 2.9%, while the AdaBoost model obtained the worst performance with an R2 of 0.75 and MAPE of 5.70%.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.26192f93b504e8d8e30b4e5e747e83d
Document Type :
article
Full Text :
https://doi.org/10.3390/en15218079