Back to Search Start Over

Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

Authors :
Javier Ampuero
Isidora Ranchal
David Nuñez
María del Mar Díaz-Herrero
Marta Maraver
José Antonio del Campo
Ángela Rojas
Inés Camacho
Blanca Figueruela
Juan D Bautista
Manuel Romero-Gómez
Source :
PLoS ONE, Vol 7, Iss 11, p e49279 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin) and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment). Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82): 4.9% (2/41) in patients receiving metformin and 41.5% (17/41) in patients without metformin treatment (logRank 9.81; p=0.002). In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8); p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2); p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6); p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4); p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM) decreased glutaminase activity up to 24% at 72 hours post-treatment (p

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.2680cb1777414867abdca5523f16b19a
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0049279