Back to Search Start Over

Testing Pullout Strength of Pedicle Screw Using Synthetic Bone Models: Is a Bilayer Foam Model a Better Representation of Vertebra?

Authors :
Vicky Varghese
Venkatesh Krishnan
Gurunathan Saravana Kumar
Source :
Asian Spine Journal, Vol 12, Iss 3, Pp 398-406 (2018)
Publication Year :
2018
Publisher :
Korean Spine Society, 2018.

Abstract

Study Design A biomechanical study. Purpose A new biomechanical model of the vertebra has been developed that accounts for the inhomogeneity of bone and the contribution of the pedicle toward the holding strength of a pedicle screw. Overview of Literature Pullout strength studies are typically carried out on rigid polyurethane foams that represent the homogeneous vertebral framework of the spine. However, the contribution of the pedicle region, which contributes to the inhomogeneity in this framework, has not been considered in previous investigations. Therefore, we propose a new biomechanical model that can account for the vertebral inhomogeneity, especially the contribution of the pedicles toward the pullout strength of the pedicle screw. Methods A bilayer foam model was developed by joining two foams representing the pedicle and the vertebra. The results of the pullout strength tests performed on the foam models were compared with those from the tests performed on the cadaver lumbar vertebra. Results Significant differences (p 0.05) in the pullout strength of pedicle screws between osteoporotic (0.85±0.08 kN) and extremely osteoporotic bone models (0.94±0.08 kN), but there was a significant difference (p 0.05) in pullout strength between cadaver and bilayer foam model in normal bones. Conclusions The new synthetic bone model that reflects the contribution of the pedicles to the pullout strength of the pedicle screws could provide a more efficacious means of testing pedicle-screw pullout strength. The bilayer model can match the pullout strength value of normal lumbar vertebra bone whereas the monolayer foam model was able to match that of the extremely osteoporotic lumbar vertebra.

Details

Language :
English
ISSN :
19761902 and 19767846
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Asian Spine Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.27264abca48b68facdd5d328a9533
Document Type :
article
Full Text :
https://doi.org/10.4184/asj.2018.12.3.398