Back to Search Start Over

Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes

Authors :
Yuan Lu
Byoung Guan Lee
Cheng Lin
Tae-Kyung Liu
Zhipeng Wang
Jiaming Miao
Sang Ho Oh
Ki Chul Kim
Kan Zhang
Jong Hyeok Park
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO4 by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO4-x) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion. As a result, the Bi-rich BiVO4-x increases the glycerol oxidation photocurrent density of BiVO4 from 1.42 to 4.26 mA cm−2 at 1.23 V vs. reversible hydrogen electrode under AM 1.5 G illumination, as well as the dihydroxyacetone selectivity from 54.0% to 80.3%, finally achieving a dihydroxyacetone production rate of 361.9 mmol m−2 h−1 that outperforms all reported values. The surface atom customization opens a way to regulate the solar-driven organic transformation pathway toward a carbon chain-balanced product.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.279d5ca734bd465e8b06f9fe303729db
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-49662-7