Back to Search Start Over

The Anti-Atopic Dermatitis Effects of Mentha arvensis Essential Oil Are Involved in the Inhibition of the NLRP3 Inflammasome in DNCB-Challenged Atopic Dermatitis BALB/c Mice

Authors :
So-Yeon Kim
Arjun Sapkota
Young Joo Bae
Seung-Hyuk Choi
Ho Jung Bae
Hyun-Jeong Kim
Ye Eun Cho
Yu-Yeong Choi
Ju-Yeon An
So-Young Cho
Sun Hee Hong
Ji Woong Choi
Se Jin Park
Source :
International Journal of Molecular Sciences, Vol 24, Iss 9, p 7720 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1β, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1β production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
9
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.27a048a091a54df1954e57112dddfa46
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms24097720