Back to Search Start Over

Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy

Authors :
Ting-Xiao Qin
En-Ming You
Mao-Xin Zhang
Peng Zheng
Xiao-Feng Huang
Song-Yuan Ding
Bing-Wei Mao
Zhong-Qun Tian
Source :
Light: Science & Applications, Vol 10, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
Nature Publishing Group, 2021.

Abstract

Abstract Organic–inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies (PCEs) over 25%. Generally, the microstructures of the perovskite materials are critical to the performances of PCEs. However, the role of the nanometer-sized grain boundaries (GBs) that universally existing in polycrystalline perovskite films could be benign or detrimental to solar cell performance, still remains controversial. Thus, nanometer-resolved quantification of charge carrier distribution to elucidate the role of GBs is highly desirable. Here, we employ correlative infrared-spectroscopic nanoimaging by the scattering-type scanning near-field optical microscopy with 20 nm spatial resolution and Kelvin probe force microscopy to quantify the density of electrons accumulated at the GBs in perovskite polycrystalline thin films. It is found that the electron accumulations are enhanced at the GBs and the electron density is increased from 6 × 1019 cm−3 in the dark to 8 × 1019 cm−3 under 10 min illumination with 532 nm light. Our results reveal that the electron accumulations are enhanced at the GBs especially under light illumination, featuring downward band bending toward the GBs, which would assist in electron-hole separation and thus be benign to the solar cell performance. Correlative infrared-spectroscopic nanoimaging by the scattering-type scanning near-field optical microscopy and Kelvin probe force microscopy quantitatively reveal the accumulated electrons at GBs in perovskite polycrystalline thin films.

Details

Language :
English
ISSN :
20477538
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Light: Science & Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.27af8a704c534e59a679fbee743f5a25
Document Type :
article
Full Text :
https://doi.org/10.1038/s41377-021-00524-7