Back to Search
Start Over
Secretory expression of recombinant small laccase genes in Gram-positive bacteria
- Source :
- Microbial Cell Factories, Vol 22, Iss 1, Pp 1-14 (2023)
- Publication Year :
- 2023
- Publisher :
- BMC, 2023.
-
Abstract
- Abstract Background Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. Results In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. Conclusions Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.
Details
- Language :
- English
- ISSN :
- 14752859
- Volume :
- 22
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Microbial Cell Factories
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.27b147e0e4884c78bcc834fda1fb7815
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12934-023-02075-5