Back to Search
Start Over
Green auto-combustion synthesis of SrNiO3/NiO/SrCO3 ferromagnetic-nanocomposites in the presence carbohydrate sugars and their application as photocatalyst for degradation of water-soluble organic-pollutants
- Source :
- Alexandria Engineering Journal, Vol 108, Iss , Pp 206-220 (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- This study utilized an environmentally-friendly method to synthesize SrNiO3/NiO/SrCO3 nanocomposites using glucose and lactose as fuels. A variety of fuel concentrations were investigated in order to determine their effects on SrNiO3/NiO/SrCO3 nanocomposites from both a pure and a morphological perspective. Various physiochemical techniques were employed to examine the crystal structure, morphology, optical, magnetic, and surface properties of the synthesized nanoparticles. These techniques included X-ray diffract, scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometers, and Brunauer-Emmett-Tellers. The band gap of the as-synthesized nanoparticles was determined to be 2.5 eV, suggesting that they are capable of acting as a photocatalyst under sunlight-like conditions. The photocatalytic activity of SrNiO3/NiO/SrCO3 nanocomposites was evaluated against Methyl orange (MO) and Methyl violet (MV), and the mechanism of the photocatalyst was investigated using EDTA, benzoic acid, and benzoquinone as scavengers. A comparison of photocatalytic activity in UV and sun-like light showed that maximum degradation (92 %) and (84.8 %) were related to degradation of MO (20 ppm) and MV in 60 min, respectively. The results indicate that SrNiO3/NiO/SrCO3 nanocomposites synthesized using the auto combustion method may serve as a promising photocatalyst for the degradation of organic pollutants in the environment within a short period of time.
Details
- Language :
- English
- ISSN :
- 11100168
- Volume :
- 108
- Issue :
- 206-220
- Database :
- Directory of Open Access Journals
- Journal :
- Alexandria Engineering Journal
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.27e982dffbee409f87cebfbc14588a50
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.aej.2024.07.088