Back to Search Start Over

On the Hybridization of Microcars with Hybrid UltraCapacitors and Li-Ion Batteries Storage Systems

Authors :
Fernando Ortenzi
Natascia Andrenacci
Manlio Pasquali
Carlo Villante
Source :
Energies, Vol 13, Iss 12, p 3230 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems’ efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS’ components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.

Details

Language :
English
ISSN :
19961073
Volume :
13
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.29e0330be0044b77a55e117f57cd16fd
Document Type :
article
Full Text :
https://doi.org/10.3390/en13123230