Back to Search Start Over

Deciphering tumour tissue organization by 3D electron microscopy and machine learning

Deciphering tumour tissue organization by 3D electron microscopy and machine learning

Authors :
Baudouin Denis de Senneville
Fatma Zohra Khoubai
Marc Bevilacqua
Alexandre Labedade
Kathleen Flosseau
Christophe Chardot
Sophie Branchereau
Jean Ripoche
Stefano Cairo
Etienne Gontier
Christophe F. Grosset
Source :
Communications Biology, Vol 4, Iss 1, Pp 1-10 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

de Senneville et al. demonstrate an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentation, mathematics and infographics to study the spatial organization of patient-derived hepatoblastoma xenograft tissues. Their approach potentially assists investigations of this childhood liver tumour and other types of tumour tissues.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.29e44149c9914d8fa417f17a2e6704ae
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-021-02919-z