Back to Search Start Over

Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7).

Authors :
Xiaodan Ding
Wei Jiang
Peipei Zhou
Lulu Liu
Xiaoling Wan
Xiujie Yuan
Xizi Wang
Miao Chen
Jun Chen
Jing Yang
Chao Kong
Bin Li
Chao Peng
Catherine C L Wong
Fajian Hou
Yan Zhang
Source :
PLoS ONE, Vol 10, Iss 12, p e0145023 (2015)
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Mixed lineage leukemia 5 (MLL5) protein is a trithorax family histone 3 lysine 4 (H3K4) methyltransferase that regulates diverse biological processes, including cell cycle progression, hematopoiesis and cancer. The mechanisms by which MLL5 protein stability is regulated have remained unclear to date. Here, we showed that MLL5 protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin-specific protease 7 (USP7). Depletion of OGT in cells led to a decrease in the MLL5 protein level through ubiquitin/proteasome-dependent proteolytic degradation, whereas ectopic expression of OGT protein suppressed MLL5 ubiquitylation. We further identified deubiquitinase USP7 as a novel MLL5-associated protein using mass spectrometry. USP7 stabilized the MLL5 protein through direct binding and deubiquitylation. Loss of USP7 induced degradation of MLL5 protein. Conversely, overexpression of USP7, but not a catalytically inactive USP7 mutant, led to decreased ubiquitylation and increased MLL5 stability. Co-immunoprecipitation and co-immunostaining assays revealed that MLL5, OGT and USP7 interact with each other to form a stable ternary complex that is predominantly located in the nucleus. In addition, upregulation of MLL5 expression was correlated with increased expression of OGT and USP7 in human primary cervical adenocarcinomas. Our results collectively reveal a novel molecular mechanism underlying regulation of MLL5 protein stability and provide new insights into the functional interplay among O-GlcNAc transferase, deubiquitinase and histone methyltransferase.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.2aff35a16964a9588beeb1d8ab80a38
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0145023