Back to Search Start Over

A note on the exact formulas for certain $2$-color partitions

Authors :
Guadalupe, Russelle
Source :
Comptes Rendus. Mathématique, Vol 362, Iss G11, Pp 1485-1490 (2024)
Publication Year :
2024
Publisher :
Académie des sciences, 2024.

Abstract

Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al.

Details

Language :
English, French
ISSN :
17783569
Volume :
362
Issue :
G11
Database :
Directory of Open Access Journals
Journal :
Comptes Rendus. Mathématique
Publication Type :
Academic Journal
Accession number :
edsdoj.2b49b5617c054db0a34f02d67c318e55
Document Type :
article
Full Text :
https://doi.org/10.5802/crmath.658