Back to Search
Start Over
A note on the exact formulas for certain $2$-color partitions
- Source :
- Comptes Rendus. Mathématique, Vol 362, Iss G11, Pp 1485-1490 (2024)
- Publication Year :
- 2024
- Publisher :
- Académie des sciences, 2024.
-
Abstract
- Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al.
- Subjects :
- Circle method
$\eta $-quotients
partitions
asymptotic formula
Mathematics
QA1-939
Subjects
Details
- Language :
- English, French
- ISSN :
- 17783569
- Volume :
- 362
- Issue :
- G11
- Database :
- Directory of Open Access Journals
- Journal :
- Comptes Rendus. Mathématique
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2b49b5617c054db0a34f02d67c318e55
- Document Type :
- article
- Full Text :
- https://doi.org/10.5802/crmath.658