Back to Search Start Over

Establishment of a human organoid-based evaluation system for assessing interspecies infection risk of animal-borne coronaviruses

Authors :
Qianchun Gong
Rendi Jiang
Lina Ji
Haofeng Lin
Meiqin Liu
Xiaofang Tang
Yong Yang
Wei Han
Jing Chen
Zishuo Guo
Qi Wang
Qian Li
Xi Wang
Tingting Jiang
Shizhe Xie
Xinglou Yang
Peng Zhou
Zhengli Shi
Xinhua Lin
Source :
Emerging Microbes and Infections, Vol 13, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

The COVID-19 pandemic presents a major threat to global public health. Several lines of evidence have shown that the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), along with two other highly pathogenic coronaviruses, SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV) originated from bats. To prevent and control future coronavirus outbreaks, it is necessary to investigate the interspecies infection and pathogenicity risks of animal-related coronaviruses. Currently used infection models, including in vitro cell lines and in vivo animal models, fail to fully mimic the primary infection in human tissues. Here, we employed organoid technology as a promising new model for studying emerging pathogens and their pathogenic mechanisms. We investigated the key host-virus interaction patterns of five human coronaviruses (SARS-CoV-2 original strain, Omicron BA.1, MERS-CoV, HCoV-229E, and HCoV-OC43) in different human respiratory organoids. Five indicators, including cell tropism, invasion preference, replication activity, host response and virus-induced cell death, were developed to establish a comprehensive evaluation system to predict coronavirus interspecies infection and pathogenicity risks. Using this system, we further examined the pathogenicity and interspecies infection risks of three SARS-related coronaviruses (SARSr-CoV), including WIV1 and rRsSHC014S from bats, and MpCoV-GX from pangolins. Moreover, we found that cannabidiol, a non-psychoactive plant extract, exhibits significant inhibitory effects on various coronaviruses in human lung organoid. Cannabidiol significantly enhanced interferon-stimulated gene expression but reduced levels of inflammatory cytokines. In summary, our study established a reliable comprehensive evaluation system to analyse infection and pathogenicity patterns of zoonotic coronaviruses, which could aid in prevention and control of potentially emerging coronavirus diseases.

Details

Language :
English
ISSN :
22221751
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Emerging Microbes and Infections
Publication Type :
Academic Journal
Accession number :
edsdoj.2b52432738554d6daade9907a163132b
Document Type :
article
Full Text :
https://doi.org/10.1080/22221751.2024.2327368