Back to Search Start Over

Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e

Authors :
Xing Wang
Renxia Zhang
Dong Yang
Guoling Li
Zhanqing Fan
Hongting Du
Zikang Wang
Yuanhua Liu
Jiajia Lin
Xiaoqing Wu
Linyu Shi
Hui Yang
Yingsi Zhou
Source :
Advanced Science, Vol 10, Iss 17, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Catalytically inactive CRISPR‐Cas13 (dCas13)‐based base editors can achieve the conversion of adenine‐to‐inosine (A‐to‐I) or cytidine‐to‐uridine (C‐to‐U) at the RNA level, however, the large size of dCas13 protein limits its in vivo applications. Here, a compact and efficient RNA base editor (ceRBE) is reported with high in vivo editing efficiency. The larger dCas13 protein is replaced with a 199‐amino acid EcCas6e protein, derived from the Class 1 CRISPR family involved in pre‐crRNA processing, and conducted optimization for toxicity and editing efficiency. The ceRBE efficiently achieves both A‐to‐I and C‐to‐U base editing with low transcriptome off‐target in HEK293T cells. The efficient repair of the DMD Q1392X mutation (68.3±10.1%) is also demonstrated in a humanized mouse model of Duchenne muscular dystrophy (DMD) after AAV delivery, achieving restoration of expression for gene products. The study supports that the compact and efficient ceRBE has great potential for treating genetic diseases.

Details

Language :
English
ISSN :
21983844
Volume :
10
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.2cb891a0e4914be98820a1a5acf40840
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202206813