Back to Search Start Over

Nesfatin-1 enhances vascular smooth muscle calcification through facilitating BMP-2 osteogenic signaling

Authors :
Xue-Xue Zhu
Xin-Yu Meng
Guo Chen
Jia-Bao Su
Xiao Fu
An-Jing Xu
Yao Liu
Xiao-Hui Hou
Hong-Bo Qiu
Qing-Yi Sun
Jin-Yi Hu
Zhuo-Lin Lv
Hai-Jian Sun
Hai-Bin Jiang
Zhi-Jun Han
Jian Zhu
Qing-Bo Lu
Source :
Cell Communication and Signaling, Vol 22, Iss 1, Pp 1-23 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.

Details

Language :
English
ISSN :
1478811X
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Communication and Signaling
Publication Type :
Academic Journal
Accession number :
edsdoj.2cca5f0c8f9d41b9905c546a52e4c2bf
Document Type :
article
Full Text :
https://doi.org/10.1186/s12964-024-01873-7