Back to Search
Start Over
Anisotropic quark stars in Einstein-Gauss-Bonnet theory
- Source :
- Physics Letters B, Vol 819, Iss , Pp 136423- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Recent progress in the determination of both masses and radii of neutron stars has put strong constraints on the equation of state (EoS) above the nuclear saturation density. Within a confining quark matter model, we propose an anisotropic star consisting of a homogeneous and unpaired charge-neutral 3-flavor interacting quark matter with O(ms4) corrections in the context of Einstein-Gauss-Bonnet gravity theory. This generalized model depends only on three free parameters: the bag constant B, the interaction parameter a and the Gauss-Bonnet coupling constant α. Given the underlying EoS, we show the possibility of obtaining the maximal neutron star mass which satisfies the recent observational data for PSR J0751+1807. The numerical analysis of mass-radius relations supports the existence of other massive pulsars with a maximum mass consistent and common radii in the range of R≲(11∼14) Km [1]. Furthermore, we discuss the mass vs central mass density (M−ρc) relation for stability, compactness and binding energy in this gravity theory. Our results thus provide circumstantial evidence in favor of super-massive pulsars in EGB gravity.
Details
- Language :
- English
- ISSN :
- 03702693
- Volume :
- 819
- Issue :
- 136423-
- Database :
- Directory of Open Access Journals
- Journal :
- Physics Letters B
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2d501f18c46e492cb914b531f5bd1d20
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.physletb.2021.136423