Back to Search Start Over

Pressure-induced phase transition in cubic Yb2O3 and phase transition enthalpies

Authors :
Sheng Jiang
Jichao Zhang
Lingrui Wang
Chuanlong Lin
Shuai Yan
Jing Liu
Aiguo Li
Renzhong Tai
Source :
AIP Advances, Vol 13, Iss 9, Pp 095018-095018-10 (2023)
Publication Year :
2023
Publisher :
AIP Publishing LLC, 2023.

Abstract

The high pressure structural evolution of cubic Yb2O3 has been studied using in situ synchrotron angle dispersive x-ray diffraction in combination with diamond anvil cell techniques up to 44.1 GPa. The XRD measurements revealed an irreversible reconstructive phase transition from cubic to monoclinic Yb2O3 at 11.2 GPa and extending up to 28.1 GPa with ∼8.1% volume collapse and a subsequent reversible displacive transition from monoclinic to hexagonal phase starting at 22.7 GPa. The monoclinic phase coexists with the hexagonal phase up to 44.1 GPa. After pressure releases, the hexagonal Yb2O3 reverts to the monoclinic structure. The second-order Birch–Murnaghan equation of state fit to the pressure–volume data yields a bulk modulus of 201 (4), 187 (6), and 200 (4) GPa for the cubic, monoclinic, and hexagonal phases, respectively. Furthermore, the effects of the hydrostatic pressure state on the diffraction patterns, bulk modulus, and onset transition pressure of Yb2O3 under high pressure have been discussed. It is concluded that the bulk modulus of the cubic Ln2O3 phase increases with decreasing cation radius due to lanthanide contraction. Another important work in this study is the determination of the enthalpies of the cubic to monoclinic and monoclinic to hexagonal phase transitions of Yb2O3 of 37.0 and 17.4 kJ/mol, respectively, based on the basic thermodynamic equations and using the onset transition pressures and corresponding volume changes obtained from high pressure XRD experiments.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
21583226
Volume :
13
Issue :
9
Database :
Directory of Open Access Journals
Journal :
AIP Advances
Publication Type :
Academic Journal
Accession number :
edsdoj.2da9ebb918c646098645970c130067a7
Document Type :
article
Full Text :
https://doi.org/10.1063/5.0164684