Back to Search Start Over

Upscaling Strategy to Simulate Permeability in a Carbonate Sample Using Machine Learning and 3D Printing

Authors :
Mohamed Soufiane Jouini
Jorge Salgado Gomes
Moussa Tembely
Ezdeen Raed Ibrahim
Source :
IEEE Access, Vol 9, Pp 90631-90641 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

Characterizing heterogeneity is crucial to assess the variability of rock properties in carbonate reservoir samples. This work introduces an original multiscale approach to simulate permeability and porosity in heterogeneous carbonate samples using 3D X-ray computed tomography images. The main novelty of our approach is to introduce a quantitative heterogeneity description in terms of texture classification using machine learning. The rock texture classification result is then used to upscale rock properties simulations from fine to coarse scale. The fine scale properties are investigated based lattice Boltzmann method, while a Darcy-scale flow simulator is adopted for estimating coarse scale properties. In addition, due to the critical role played by petrophysical properties at fine scale, a 3D printing technique is employed to validate experimentally the numerical simulations at this scale. Finally, we present an application of our proposed approach on a real carbonate sample from the Middle East carbonate oilfield reservoir.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.2dc3e2332ce9440b9a9fed6158b76cc0
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3091772