Back to Search Start Over

Automated Detection of Cannabis-Induced Alteration in Cardiac Autonomic Regulation of the Indian Paddy-Field Workers Using Empirical Mode Decomposition, Discrete Wavelet Transform and Wavelet Packet Decomposition Techniques with HRV Signals

Authors :
Suraj Kumar Nayak
Maciej Jarzębski
Anna Gramza-Michałowska
Kunal Pal
Source :
Applied Sciences, Vol 12, Iss 20, p 10371 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Early detection of the dysfunction of the cardiac autonomic regulation (CAR) may help in reducing cannabis-related cardiovascular morbidities. The current study examined the occurrence of changes in the CAR activity that is associated with the consumption of bhang, a cannabis-based product. For this purpose, the heart rate variability (HRV) signals of 200 Indian male volunteers, who were categorized into cannabis consumers and non-consumers, were decomposed by Empirical Mode Decomposition (EMD), Discrete Wavelet transform (DWT), and Wavelet Packet Decomposition (WPD) at different levels. The entropy-based parameters were computed from all the decomposed signals. The statistical significance of the parameters was examined using the Mann–Whitney test and t-test. The results revealed a significant variation in the HRV signals among the two groups. Herein, we proposed the development of machine learning (ML) models for the automatic classification of cannabis consumers and non-consumers. The selection of suitable input parameters for the ML models was performed by employing weight-based parameter ranking and dimension reduction methods. The performance indices of the ML models were compared. The results recommended the Naïve Bayes (NB) model developed from WPD processing (level 8, db02 mother wavelet) of the HRV signals as the most suitable ML model for automatic identification of cannabis users.

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.2f04514d191549969d704b714536de32
Document Type :
article
Full Text :
https://doi.org/10.3390/app122010371