Back to Search Start Over

A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma

Authors :
Zhaoxiang Song
Mengge Su
Xiangyu Li
Jinlin Xie
Fei Han
Jianning Yao
Source :
BMC Gastroenterology, Vol 23, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract background Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. Methods We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. Results The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. Conclusion Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.

Details

Language :
English
ISSN :
1471230X
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Gastroenterology
Publication Type :
Academic Journal
Accession number :
edsdoj.2f8fd2e84c5b490da0f4c4208c0d8a8b
Document Type :
article
Full Text :
https://doi.org/10.1186/s12876-023-03001-0