Back to Search
Start Over
Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides
- Source :
- Communications Physics, Vol 7, Iss 1, Pp 1-13 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6 and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8 within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2f9b3595719a405fbd0e35ddb9cb72e7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-024-01528-6