Back to Search Start Over

Study on the removal characteristics and degradation pathways of highly toxic and refractory organic pollutants in real pharmaceutical factory wastewater treated by a pilot-scale integrated process

Authors :
Wei Dai
Ji-Wei Pang
Jie Ding
Yu-Qian Wang
Lu-Yan Zhang
Nan-Qi Ren
Shan-Shan Yang
Source :
Frontiers in Microbiology, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

IntroductionPharmaceutical wastewater frequently contains high levels of toxic pollutants. If they are discharged untreated, they pose a threat to the environment. The traditional activated sludge process and the advanced oxidation process do not sufficiently remove toxic and conventional pollutants from pharmaceutical wastewater treatment plants (PWWTPs).MethodsWe designed a pilot-scale reaction system to reduce toxic organic pollutants and conventional pollutants from pharmaceutical wastewater during the biochemical reaction stage. This system included a continuous stirred tank reactor (CSTR), microbial electrolysis cells (MECs), an expanded sludge bed reactor (EGSB), and a moving bed biofilm reactor (MBBR). We used this system to further investigate the benzothiazole degradation pathway.Results and discussionThe system effectively degraded the toxic pollutants (benzothiazole, pyridine, indole, and quinoline) and the conventional chemicals (COD, NH4+-N, TN). During the stable operation of the pilot-scale plant, the total removal rates of benzothiazole, indole, pyridine, and quinoline were 97.66, 94.13, 79.69, and 81.34%, respectively. The CSTR and MECs contributed the most to the removal of toxic pollutants, while the EGSB and MBBR contributed less to the removal of the four toxic pollutants. Benzothiazoles can be degraded via two pathways: the benzene ring-opening reaction and the heterocyclic ring-opening reaction. The heterocyclic ring-opening reaction was more important in degrading the benzothiazoles in this study.ConclusionThis study provides feasible design alternatives for PWWTPs to remove both toxic and conventional pollutants at the same time.

Details

Language :
English
ISSN :
1664302X
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.31776cb6f5354e5385fbb0709ff1c30a
Document Type :
article
Full Text :
https://doi.org/10.3389/fmicb.2023.1128233